Hermite reduction and a Waring’s problem for integral quadratic forms over number fields

نویسندگان

چکیده

We generalize the Hermite-Korkin-Zolotarev (HKZ) reduction theory of positive definite quadratic forms over $\mathbb Q$ and its balanced version introduced recently by Beli-Chan-Icaza-Liu to a totally real number field $K$. apply HKZ-reduction study growth

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary quadratic forms over number fields with small class number

We enumerate all positive definite ternary quadratic forms over number fields with class number at most 2. This is done by constructing all definite quaternion orders of type number at most 2 over number fields. Finally, we list all definite quaternion orders of ideal class number 1 or 2.

متن کامل

One class genera of ternary quadratic forms over number fields

We enumerate all one class genera of definite ternary quadratic forms over number fields. For this, we construct all Gorenstein orders of type number one in definite quaternion algebras over number fields. Finally, we list all definite quaternion orders of ideal class number one.

متن کامل

Theta Functions of Indefinite Quadratic Forms over Real Number Fields

We define theta functions attached to indefinite quadratic forms over real number fields and prove that these theta functions are Hilbert modular forms by regarding them as specializations of symplectic theta functions. The eighth root of unity which arises under modular transformations is determined explicitly.

متن کامل

Quadratic Forms over Arbitrary Fields

Introduction. Witt [5] proved that two binary or ternary quadratic forms, over an arbitrary field (of characteristic not 2) are equivalent if and only if they have the same determinant and Hasse invariant. His proof is brief and elegant but uses a lot of the theory of simple algebras. The purpose of this note is to make this fundamental theorem more accessible by giving a short proof using only...

متن کامل

Quadratic Forms over Global Fields

1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2021

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8298